Applications of the Löwenheim-Skolem theorem. Part II Non impeditus ab ulla scientia

K. P. Hart

Faculty EEMCS TU Delft

Hejnice, 30. Leden, 2012: 09:00 - 09:50

Outline

- Dimension functions
- Formulas
- Bases
- Reflections

2 Categoricity

Dimension functions Formulas Bases Reflections

Covering dimension

Definition (Lebesgue)

 $\dim X \leqslant n$ if every finite open cover has a (finite) open refinement of order at most n+1

(i.e., every n + 2-element subfamily has an empty intersection).

There is a convenient characterization.

Theorem (Hemmingsen)

dim $X \leq n$ iff every n + 2-element open cover has a shrinking with an empty intersection.

Dimension functions Formulas Bases Reflections

Covering dimension

We say dim X = n if dim $X \leq n$ but dim $X \nleq n-1$; also, dim $X = \infty$ means dim $X \nleq n$ for all $n \in \mathbb{N}$. dim X is the *covering dimension* of X.

Theorem

dim $[0,1]^n = n$ for all $n \in \mathbb{N} \cup \{\infty\}$.

Thus, dim helps in showing that all cubes are topologically distinct.

Dimension functions Formulas Bases Reflections

Large inductive dimension

Definition (Čech)

Ind $X \leq n$ if between every two disjoint closed sets A and B there is a partition L that satisfies $\operatorname{Ind} L \leq n-1$. The starting point: $\operatorname{Ind} X \leq -1$ iff $X = \emptyset$.

L is a partition between *A* and *B* means: there are closed sets *F* and *G* that cover *X* and satisfy: $F \cap B = \emptyset$, $G \cap A = \emptyset$ and $F \cap G = L$.

Dimension functions Formulas Bases Reflections

Large inductive dimension

We say $\operatorname{Ind} X = n$ if $\operatorname{Ind} X \leq n$ but $\operatorname{Ind} X \leq n-1$; also, $\operatorname{Ind} X = \infty$ means $\operatorname{Ind} X \leq n$ for all $n \in \mathbb{N}$. Ind X is the *large inductive dimension* of X.

Theorem

$$\operatorname{Ind}[0,1]^n = n \text{ for all } n \in \mathbb{N} \cup \{\infty\}.$$

Thus, Ind helps in showing that all cubes are topologically distinct.

Reflections on dimension

Categoricity Sources Dimension functions Formulas Bases Reflections

Dimensionsgrad

Definition (Brouwer)

 $\operatorname{Dg} X \leq n$ if between every two disjoint closed sets A and B there is a cut C that satisfies $\operatorname{Dg} C \leq n-1$. The starting point: $\operatorname{Dg} X \leq -1$ iff $X = \emptyset$.

C is a cut between *A* and *B* means: $C \cap K \neq \emptyset$ whenever *K* is a subcontinuum of *X* that meets both *A* and *B*.

Dimension functions Formulas Bases Reflections

Dimensionsgrad

We say $\operatorname{Dg} X = n$ if $\operatorname{Dg} X \leq n$ but $\operatorname{Dg} X \leq n-1$; also, $\operatorname{Dg} X = \infty$ means $\operatorname{Dg} X \leq n$ for all $n \in \mathbb{N}$. $\operatorname{Dg} X$ is the *Dimensionsgrad* of X.

Theorem

$$Dg[0,1]^n = n$$
 for all $n \in \mathbb{N} \cup \{\infty\}$.

Thus, Dg helps in showing that all cubes are topologically distinct.

Reflections on dimension

Categoricity Sources Dimension functions Formulas Bases Reflections

Equalities

Theorem

For every compact metrizable space X we have

 $\dim X = \operatorname{Dg} X = \operatorname{Ind} X$

- dim X = Ind X for all metrizable X
- dim X = Dg X for all σ -compact metrizable $X \dots$
- ... but not for all separable metrizable X

Dimension functions Formulas Bases Reflections

More inequalities

For compact Hausdorff spaces:

- $Dg X \leq Ind X$ (each partition is a cut)
- dim $X \leq$ Ind X (Vedenissof)
- dim $X \leq Dg X$ (Fedorchuk)

We will (re)prove the last two inequalities algebraically.

Dimension functions Formulas Bases Reflections

Covering dimension

Here is Hemmingsen's characterization of dim $X \leq n$ reformulated in terms of closed sets and cast as a formula, δ_n , in the language of lattices

$$(\forall x_1)(\forall x_2)\cdots(\forall x_{n+2})(\exists y_1)(\exists y_2)\cdots(\exists y_{n+2}) \\ [(x_1 \sqcap x_2 \sqcap \cdots \sqcap x_{n+2} = \mathfrak{o}) \rightarrow \\ ((x_1 \leqslant y_1) \land (x_2 \leqslant y_2) \land \cdots \land (x_{n+2} \leqslant y_{n+2}) \\ \land (y_1 \sqcap y_2 \sqcap \cdots \sqcap y_{n+2} = \mathfrak{o}) \\ \land (y_1 \sqcup y_2 \sqcup \cdots \sqcup y_{n+2} = \mathfrak{1}))].$$

Dimension functions Formulas Bases Reflections

Large inductive dimension

We can express $\operatorname{Ind} X \leq n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)

$$(\forall x)(\forall y)(\exists u) [(((x \leq a) \land (y \leq a) \land (x \sqcap y = o)) \rightarrow (partn(u, x, y, a) \land I_{n-1}(u))]$$

where partn(u, x, y, a) says that u is a partition between x and y in the (sub)space a:

$$(\exists f)(\exists g)((x \sqcap f = o) \land (y \sqcap g = o) \land (f \sqcup g = a) \land (f \sqcap g = u)).$$

We start with $I_{-1}(a)$, which denotes a = o

Delft University of Technology

Dimension functions Formulas Bases Reflections

Dimensionsgrad

Here we have the recursive definition of a formula $\Delta_n(a)$:

$$\begin{array}{l} (\forall x)(\forall y)(\exists u)\\ \left[\left((x \leqslant a) \land (y \leqslant a) \land (x \sqcap y = o)\right) \rightarrow (\operatorname{cut}(u, x, y, a) \land \Delta_{n-1}(u))\right],\\ \text{and } \Delta_{-1}(a) \text{ denotes } a = o. \end{array}$$

Dimension function Formulas Bases Reflections

Dimensionsgrad (auxiliary formulas)

The formula cut(u, x, y, a) expresses that u is a cut between x and y in a:

$$(\forall v) [((v \leq a) \land \operatorname{conn}(v) \land (v \sqcap x \neq 0) \land (v \sqcap y \neq 0)) \rightarrow (v \sqcap u \neq 0)],$$

and conn(a) says that a is connected:

$$(\forall x)(\forall y)[((x \sqcap y = o) \land (x \sqcup y = a)) \rightarrow ((x = o) \lor (x = a))],$$

Reflections on dimension

Categoricity Sources Dimension function Formulas Bases Reflections

Equivalences

- dim $X \leq n$ iff δ_n holds in 2^X
- Ind $X \leq n$ iff $I_n(X)$ holds in 2^X
- $\operatorname{Dg} X \leq n$ iff $\Delta_n(X)$ holds in 2^X

Reflections on dimension

Sources

Dimension functions Formulas Bases Reflections

Covering dimension

Theorem

Let X be compact. Then dim $X \leq n$ iff some (every) lattice-base for its closed sets satisfies δ_n .

Proof: compactness and a shrinking-and-swelling argument.

Dimension functions Formulas Bases Reflections

Large inductive dimension

Theorem

Let X be compact. If some lattice-base, \mathcal{B} , for its closed sets satisfies $I_n(X)$ then $\operatorname{Ind} X \leq n$.

Proof: induction and, again, a swelling-and-shrinking argument.

No equivalence, see later.

Reflections on dimension

Sources

Dimension function Formulas Bases Reflections

Dimensionsgrad

Theorem

Let X be compact. If some lattice-base, \mathcal{B} , for its closed sets satisfies $\Delta_n(X)$ then we can't say anything about $\operatorname{Dg} X$.

Proof: we can cheat and create, for [0, 1] say, a lattice base without connected elements; that base satisfies $\Delta_0(X)$ vacuously.

Dimension function Formulas Bases Reflections

Take an elementary sublattice

Let X be compact Hausdorff and let \mathcal{B} be a countable elementary sublattice of 2^X .

Let $w\mathcal{B}$ be the ultrafilter space of \mathcal{B} ;

The w is for Wallman.

Reflections on dimension Categoricity Sources Reflections

Covering dimension vs large inductive dimension

The formula δ_n holds in \mathcal{B} iff it holds in 2^X , hence

 $\dim w\mathcal{B} = \dim X.$

The formula $I_n(X)$ holds in \mathcal{B} iff it holds in 2^X , hence

Ind $w\mathcal{B} \leq \operatorname{Ind} X$.

But wB is compact metrizable, so dim wB = Ind wB, hence

dim $X \leq \operatorname{Ind} X$.

Dimension function Formulas Bases Reflections

Covering dimension vs large inductive dimension

There are (many) compact Hausdorff spaces with non-coinciding dimensions, e.g., an early example of a compact L such that dim L = 1 and Ind L = 2 (Lokucievskiĭ).

In that case Ind wB < Ind L for all elementary sublattices of 2^L .

Dimension functior Formulas Bases Reflections

Covering dimension vs Dimensionsgrad

The stronger inequality dim $X \leq Dg X$ can be proved via wB as well.

The argument is more involved.

It uses in an essential way that \mathcal{B} is an elementary sublattice of 2^X .

Dimension function Formulas Bases Reflections

The proof

Let n = Dg X. Let A and B be closed and disjoint in wB. Wlog: $A, B \in B$. Elementarity: there is $C \in B$ that is a cut between A and B in Xand that satisfies $\Delta_{n-1}(C) \leq n-1$. Inductive assumption: $Dg C \leq n-1$ in wB, because $C = \{D \in B : D \subseteq C\}$ is an elementary sublattice of $\{D \in 2^X : D \subseteq C\}$ and C-in-wB is wC. Still to show: C-in-wB is a cut between A and B in wB.

Dimension function Formulas Bases Reflections

The proof (continued)

Let F be a closed set in wB that meets A and B but not C. We show F is not connected.

Find H in \mathcal{B} around F, disjoint from C.

Back in X no component of H meets C, hence it does *not* meet both A and B.

Dimension function Formulas Bases Reflections

The proof (continued)

By well-known topology and elementarity there are disjoint elements H_A and H_B of \mathcal{B} such that $H = H_A \cup H_B$, $A \cap H \subseteq H_A$ and $B \cap H \subseteq H_B$.

That well-known topology: the decomposition of H into its components is a zero-dimensional space; hence there is a clopen-in-H set K such that $A \cap H \subseteq K$ and $B \cap H \cap K = \emptyset$. This yields a formula to apply elementarity to.

Down in $w\mathcal{B}$ we have exactly the same relations, and hence also $F \cap A \subseteq H_A$ and $B \cap F \subseteq H_B$, so H_A and H_B show F is not connected.

Reflections on dimension Categoricity Sources Reflections

Covering dimension vs Dimensionsgrad

The formula δ_n holds in \mathcal{B} iff it holds in 2^X , hence

 $\dim w\mathcal{B} = \dim X.$

We have shown outright that

 $\operatorname{Dg} w\mathcal{B} \leq \operatorname{Ind} X.$

But wB is compact metrizable, so dim wB = Dg wB, hence

dim $X \leq Dg X$.

Given a metric continuum X there is another metric continuum Y such that

- X and Y look the same (they have elementarily equivalent countable bases)
- X and Y are not homeomorphic

Example: zero-dimensionality

Here is a first-order sentence, call it ζ

$$(\forall x)(\forall y)(\exists u)(\exists v) ((x \sqcap y = 0) \to ((x \leqslant u) \land (y \leqslant v) \land (u \sqcap v = 0) \land (u \sqcup v = 1)))$$

In words: any two disjoint closed sets (x and y) can be separated by clopen sets (u and v).

By *compactness*, if some base satisfies this sentence then the space is zero-dimensional.

Example: no isolated points

Here is a another first-order sentence, call it π

$$(\forall x)(\exists y)((x < 1) \rightarrow ((x < y) \land (y < 1)))$$

In words: every closed proper subset (x) is properly contained in a closed proper subset (y);

in fewer words: there are no isolated points.

If some base satisfies this sentence then the space has no isolated points.

Example: the Cantor set is categorical

Let X be compact metric with a countable base \mathcal{B} for the closed sets that satisfies ζ and π . Then X is zero-dimensional and without isolated points. So X is (homeomorphic to) the Cantor set C.

Thus: if X looks like C then X is homeomorphic to C.

The Cantor set is categorical among compact metric spaces.

What the main result says

Among metric continua there is no categorical space. No (in)finite list of first-order properties will characterize a single metric continuum.

A case in point: the pseudoarc

The pseudoarc is the only metric continuum that is

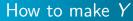
- hereditarily indecomposable and
- chainable

A two-item list but ... Chainability is *not* first-order. (This we will see tomorrow.) (Hereditary indecomposability is.)

An embedding lemma

Lemma

Let X and Z be metric continua, with countable lattice bases, \mathcal{B} and \mathcal{C} , for their respective families of closed sets. Let u be a free ultrafilter on ω . There is an embedding of \mathcal{C} into the ultrapower of \mathcal{B} by u.



Let X and Z be metric continua, with countable lattice bases, \mathcal{B} and \mathcal{C} , for their respective families of closed sets. Let u be a free ultrafilter on ω . Let $\varphi : \mathcal{C} \to \mathcal{B}_u$ be an embedding.

Apply the Löwenheim-Skolem theorem: Find a countable elementary sublattice \mathcal{D} of \mathcal{B}_u that contains $\varphi[\mathcal{C}]$. Let Y be the Wallman space of \mathcal{D} .

- Y is compact metric (D is countable).
- \mathcal{D} is a base for the closed sets of Y (by Wallman's theorem).
- \mathcal{D} is elementarily equivalent to \mathcal{B}_u and hence to \mathcal{B} .
- Y maps onto Z (because $\varphi[\mathcal{C}]$ is embedded into \mathcal{D}).

Getting a good Y

Let X be given, with a countable base \mathcal{B} for its closed sets. There is a metric continuum Z that is not a continuous image of X (Waraszkiewicz). Find X with a base that is elementarily equivalent to \mathcal{B} and

Find Y with a base that is elementarily equivalent to \mathcal{B} and such that Y maps onto Z.

So: Y is not homeomorphic to X.

Reflections on dimension Sources

Website: fa.its.tudelft.nl/~hart

K. P. Hart.

Elementarity and dimensions, Mathematical Notes, **78** (2005), 264 - 269

K.P. Hart.

There is no categorical metric continuum, Aportaciones Matemáticas, Investigacion 19 (2007), 39-43.

