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Covering dimension

Definition (Lebesgue)

dim X 6 n if every finite open cover has a (finite) open refinement
of order at most n + 1
(i.e., every n + 2-element subfamily has an empty intersection).

There is a convenient characterization.

Theorem (Hemmingsen)

dim X 6 n iff every n + 2-element open cover has a shrinking with
an empty intersection.
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Covering dimension

We say dim X = n if dim X 6 n but dim X 
 n − 1;
also, dim X =∞ means dim X 
 n for all n ∈ N.
dim X is the covering dimension of X .

Theorem

dim[0, 1]n = n for all n ∈ N ∪ {∞}.

Thus, dim helps in showing that all cubes are topologically distinct.
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Large inductive dimension

Definition (Čech)

Ind X 6 n if between every two disjoint closed sets A and B there
is a partition L that satisfies Ind L 6 n − 1.
The starting point: Ind X 6 −1 iff X = ∅.

L is a partition between A and B means: there are closed sets F
and G that cover X and satisfy: F ∩ B = ∅, G ∩ A = ∅ and
F ∩ G = L.
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Large inductive dimension

We say Ind X = n if Ind X 6 n but Ind X 
 n − 1;
also, Ind X =∞ means Ind X 
 n for all n ∈ N.
Ind X is the large inductive dimension of X .

Theorem

Ind[0, 1]n = n for all n ∈ N ∪ {∞}.

Thus, Ind helps in showing that all cubes are topologically distinct.

K. P. Hart Applications of the Löwenheim-Skolem theorem. Part II
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Dimensionsgrad

Definition (Brouwer)

Dg X 6 n if between every two disjoint closed sets A and B there
is a cut C that satisfies Dg C 6 n − 1.
The starting point: Dg X 6 −1 iff X = ∅.

C is a cut between A and B means: C ∩ K 6= ∅ whenever K is a
subcontinuum of X that meets both A and B.
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Dimensionsgrad

We say Dg X = n if Dg X 6 n but Dg X 
 n − 1;
also, Dg X =∞ means Dg X 
 n for all n ∈ N.
Dg X is the Dimensionsgrad of X .

Theorem

Dg[0, 1]n = n for all n ∈ N ∪ {∞}.

Thus, Dg helps in showing that all cubes are topologically distinct.
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Equalities

Theorem

For every compact metrizable space X we have

dim X = Dg X = Ind X

dim X = Ind X for all metrizable X

dim X = Dg X for all σ-compact metrizable X . . .

. . . but not for all separable metrizable X
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More inequalities

For compact Hausdorff spaces:

Dg X 6 Ind X (each partition is a cut)

dim X 6 Ind X (Vedenissof)

dim X 6 Dg X (Fedorchuk)

We will (re)prove the last two inequalities algebraically.
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Covering dimension

Here is Hemmingsen’s characterization of dim X 6 n reformulated
in terms of closed sets and cast as a formula, δn, in the language
of lattices

(∀x1)(∀x2) · · · (∀xn+2)(∃y1)(∃y2) · · · (∃yn+2)[
(x1 u x2 u · · · u xn+2 = 0)→(

(x1 6 y1) ∧ (x2 6 y2) ∧ · · · ∧ (xn+2 6 yn+2)

∧ (y1 u y2 u · · · u yn+2 = 0)

∧ (y1 t y2 t · · · t yn+2 = 1)
)]
.
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Large inductive dimension

We can express Ind X 6 n in a similar fashion, the formula In(a)
becomes (recursively)

(∀x)(∀y)(∃u)[
(
(
(x 6 a)∧(y 6 a)∧(xuy = 0)

)
→

(
partn(u, x , y , a)∧In−1(u)

)]
where partn(u, x , y , a) says that u is a partition between x and y in
the (sub)space a:

(∃f )(∃g)
(
(x u f = 0) ∧ (y u g = 0) ∧ (f t g = a) ∧ (f u g = u)

)
.

We start with I−1(a), which denotes a = 0
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Dimensionsgrad

Here we have the recursive definition of a formula ∆n(a):

(∀x)(∀y)(∃u)[(
(x 6 a)∧(y 6 a)∧(xuy = 0)

)
→

(
cut(u, x , y , a)∧∆n−1(u)

)]
,

and ∆−1(a) denotes a = 0.
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Dimensionsgrad (auxiliary formulas)

The formula cut(u, x , y , a) expresses that u is a cut between x and
y in a:

(∀v)
[(

(v 6 a)∧conn(v)∧(vux 6= 0)∧(vuy 6= 0)
)
→ (vuu 6= 0)

]
,

and conn(a) says that a is connected:

(∀x)(∀y)
[(

(x u y = 0) ∧ (x t y = a)
)
→

(
(x = 0) ∨ (x = a)

)]
,
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Equivalences

dim X 6 n iff δn holds in 2X

Ind X 6 n iff In(X ) holds in 2X

Dg X 6 n iff ∆n(X ) holds in 2X
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Covering dimension

Theorem

Let X be compact. Then dim X 6 n iff some (every) lattice-base
for its closed sets satisfies δn.

Proof: compactness and a shrinking-and-swelling argument.
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Large inductive dimension

Theorem

Let X be compact. If some lattice-base, B, for its closed sets
satisfies In(X ) then Ind X 6 n.

Proof: induction and, again, a swelling-and-shrinking argument.

No equivalence, see later.
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Theorem

Let X be compact. If some lattice-base, B, for its closed sets
satisfies ∆n(X ) then we can’t say anything about Dg X .

Proof: we can cheat and create, for [0, 1] say, a lattice base
without connected elements; that base satisfies ∆0(X ) vacuously.
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Take an elementary sublattice

Let X be compact Hausdorff and let B be a countable elementary
sublattice of 2X .

Let wB be the ultrafilter space of B;

The w is for Wallman.
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Covering dimension vs large inductive dimension

The formula δn holds in B iff it holds in 2X , hence

dim wB = dim X .

The formula In(X ) holds in B iff it holds in 2X , hence

Ind wB 6 Ind X .

But wB is compact metrizable, so dim wB = Ind wB, hence

dim X 6 Ind X .
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Covering dimension vs large inductive dimension

There are (many) compact Hausdorff spaces with non-coinciding
dimensions, e.g., an early example of a compact L such that
dim L = 1 and Ind L = 2 (Lokucievskĭı).

In that case Ind wB < Ind L for all elementary sublattices of 2L.
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Covering dimension vs Dimensionsgrad

The stronger inequality dim X 6 Dg X can be proved via wB as
well.
The argument is more involved.
It uses in an essential way that B is an elementary sublattice of 2X .
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The proof

Let n = Dg X .
Let A and B be closed and disjoint in wB. Wlog: A,B ∈ B.
Elementarity: there is C ∈ B that is a cut between A and B in X
and that satisfies ∆n−1(C ) 6 n − 1.
Inductive assumption: Dg C 6 n − 1 in wB, because
C = {D ∈ B : D ⊆ C} is an elementary sublattice of
{D ∈ 2X : D ⊆ C} and C -in-wB is wC.
Still to show: C -in-wB is a cut between A and B in wB.

K. P. Hart Applications of the Löwenheim-Skolem theorem. Part II



Reflections on dimension
Categoricity

Sources

Dimension functions
Formulas
Bases
Reflections

The proof (continued)

Let F be a closed set in wB that meets A and B but not C .
We show F is not connected.

Find H in B around F , disjoint from C .

Back in X no component of H meets C , hence it does not meet
both A and B.
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The proof (continued)

By well-known topology and elementarity there are disjoint
elements HA and HB of B such that H = HA ∪ HB , A ∩ H ⊆ HA

and B ∩ H ⊆ HB .

That well-known topology: the decomposition of H into its
components is a zero-dimensional space; hence there is a
clopen-in-H set K such that A ∩ H ⊆ K and B ∩ H ∩ K = ∅.
This yields a formula to apply elementarity to.
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The proof (continued)

Down in wB we have exactly the same relations, and hence also
F ∩ A ⊆ HA and B ∩ F ⊆ HB , so HA and HB show F is not
connected.
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Covering dimension vs Dimensionsgrad

The formula δn holds in B iff it holds in 2X , hence

dim wB = dim X .

We have shown outright that

Dg wB 6 Ind X .

But wB is compact metrizable, so dim wB = Dg wB, hence

dim X 6 Dg X .
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The result

Given a metric continuum X there is another metric continuum Y
such that

X and Y look the same
(they have elementarily equivalent countable bases)

X and Y are not homeomorphic
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Example: zero-dimensionality

Here is a first-order sentence, call it ζ

(∀x)(∀y)(∃u)(∃v)(
(x u y = 0)→ ((x 6 u) ∧ (y 6 v) ∧ (u u v = 0) ∧ (u t v = 1))

)
In words: any two disjoint closed sets (x and y) can be separated
by clopen sets (u and v).
By compactness, if some base satisfies this sentence then the space
is zero-dimensional.
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Example: no isolated points

Here is a another first-order sentence, call it π

(∀x)(∃y)
(
(x < 1)→ ((x < y) ∧ (y < 1))

)
In words: every closed proper subset (x) is properly contained in a
closed proper subset (y);
in fewer words: there are no isolated points.
If some base satisfies this sentence then the space has no isolated
points.
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Example: the Cantor set is categorical

Let X be compact metric with a countable base B for the closed
sets that satisfies ζ and π.
Then X is zero-dimensional and without isolated points.
So X is (homeomorphic to) the Cantor set C .

Thus: if X looks like C then X is homeomorphic to C .

The Cantor set is categorical among compact metric spaces.
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What the main result says

Among metric continua there is no categorical space.
No (in)finite list of first-order properties will characterize a single
metric continuum.
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A case in point: the pseudoarc

The pseudoarc is the only metric continuum that is

hereditarily indecomposable and

chainable

A two-item list but . . .
Chainability is not first-order. (This we will see tomorrow.)
(Hereditary indecomposability is.)
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An embedding lemma

Lemma

Let X and Z be metric continua, with countable lattice bases, B
and C, for their respective families of closed sets.
Let u be a free ultrafilter on ω.
There is an embedding of C into the ultrapower of B by u.

K. P. Hart Applications of the Löwenheim-Skolem theorem. Part II



Reflections on dimension
Categoricity

Sources

How to make Y

Let X and Z be metric continua, with countable lattice bases, B
and C, for their respective families of closed sets.
Let u be a free ultrafilter on ω.
Let ϕ : C → Bu be an embedding.

Apply the Löwenheim-Skolem theorem:
Find a countable elementary sublattice D of Bu that contains ϕ[C].
Let Y be the Wallman space of D.
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Properties of Y

Y is compact metric (D is countable).

D is a base for the closed sets of Y (by Wallman’s theorem).

D is elementarily equivalent to Bu and hence to B.

Y maps onto Z (because ϕ[C] is embedded into D).
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Getting a good Y

Let X be given, with a countable base B for its closed sets.
There is a metric continuum Z that is not a continuous image
of X (Waraszkiewicz).
Find Y with a base that is elementarily equivalent to B and
such that Y maps onto Z .
So: Y is not homeomorphic to X .

K. P. Hart Applications of the Löwenheim-Skolem theorem. Part II



Reflections on dimension
Categoricity

Sources

Light reading

Website: fa.its.tudelft.nl/~hart

K. P. Hart.
Elementarity and dimensions, Mathematical Notes, 78 (2005),
264–269.

K.P. Hart,
There is no categorical metric continuum, Aportaciones
Matemáticas, Investigacion 19 (2007), 39–43.
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